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Load-Frequency Control in a Deregulated Environment Based 
on Bisection Search 
 
 
F. Daneshfar* and E. Hosseini** 
 
 

Abstract: Recently several robust control designs have been proposed to the Load-
Frequency Control (LFC) problem. However, the importance and difficulties in the 
selection of weighting functions of these approaches and the pole-zero cancellation 
phenomenon associated with it produces closed loop poles. Also the order of robust 
controllers is as high as the plant. This gives rise to complex structure of such controllers 
and reduces their applicability in industry. In addition conventional LFC systems that use 
classical or trial-and-error approaches to tune the PI controller parameters are more difficult 
and time-consuming to design. In this paper, a bisection search method is proposed to 
design well-tuned PI controller in a restructured power system based on the bilateral policy 
scheme. The new optimized solution has been applied to a 3-area restructured power 
system with possible contracted scenarios and the results evaluation shows the proposed 
method achieves good performance compared with recently powerful robust controllers. 
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1 Introduction1 
One of the important power system control problems for 
which a lot of studies have been made is load–frequency 
control (LFC) [1-3]. 

The main goal of LFC is to maintain zero steady 
state errors for frequency deviation and good tracking 
load demands in a multi-area power system, it is also 
treated as an ancillary service essential for maintaining 
the electrical system reliability at an adequate level [4]. 

However, the electric power industry is in transition 
from large, vertically integrated utilities providing 
power at regulated rates to an industry that will 
incorporate competitive companies selling unbundled 
power at lower rates. Therefore in a deregulated 
environment, LFC acquires a fundamental role to power 
system control which there has been various 
decentralized robust and optimal control methods to 
provide better conditions for the electricity trading 
during the last two decades [5-9]. However, most of the 
above robust and optimal methods need some 
information of the system states, which are very 
difficult to know completely. On the other hand, the 
order of the robust controllers is as high as that of the 
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plant. This gives rise to complex structure, complex 
state-feedback or high-order dynamic controllers and 
reduces their applicability [10]. 

Then despite the potential of robust control 
techniques with different structures, they are not 
practical for industry practices and power system 
utilities prefer the online tuned PI controller’s because 
of the ease of tuning and the lack of assurance of the 
stability and easy implementation. 

In this paper a new optimization method based on 
bisection search [11], is used for tuning of PI controller 
parameters. The bisection search is a very simple and 
rapidly converging method in mathematics. It is a root-
finding approach which repeatedly bisects an interval 
and then selects a subinterval in which a root must lie 
for further processing. 

The above technique, which is ideally practical for 
industry, has been applied to a three-control area 
example as a case study and has been compared with the 
robust ILMI based controller proposed by [9]. The 
results show the optimized controller guarantee the 
robust performance for a wide range of operating 
conditions as well as full-dynamic H∞ controllers. 

In this paper following a brief discussion on a 
deregulated LFC model, an explanation on bisection 
based optimization method and how a load–frequency 
controller can work within this formulation is provided. 
Simulation studies are performed to illustrate the 
capability of the proposed control approach. The 
resulting controllers are shown to minimize the effect of 
disturbances and achieve acceptable frequency 
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regulation in the presence of various load change 
scenarios. 
 
2 Background 

In this section, following an introduction to the 
traditional and a restructured power system LFC 
models, the proposed control strategy has been 
characterized. 
 

2.1   Conventional and Generalized LFC Model 
Frequency changes in large-scale power systems are 

a direct result of the imbalance between the electrical 
load and the power supplied by system connected 
generators [12]. A change in real power demand at one 
point of a network is reflected throughout the system by 
a change in frequency. Therefore, system frequency 
provides a useful index to indicate system generation 
and load imbalance [13]. Any short term energy 
imbalance will result in an instantaneous change in 
system frequency as the disturbance is initially offset by 
the kinetic energy of the rotating plant. Significant loss 
in the generation without an adequate system response 
can produce extreme frequency excursions outside the 
working range of the plant. The control of frequency 
and power generation is commonly referred to LFC 
which is a major function of Automatic Generation 
Control (AGC) systems [14]. 

In this classical AGC system, the balance between 
connected areas is achieved by detecting the frequency 
and tie line power deviations to generate the Area 
Control Error (ACE) signal which is turn utilized in the 
PI control strategy. 

However, towards the end of the twentieth century 
many countries sought to reduce direct government 
involvement in, and to increase the economic efficiency 
of, their electricity industries through a change in 
industry managements, often described as electricity 
industry deregulation [4]. 

Deregulation is the act or process of removing or 
reducing state regulations. It is therefore opposite of 
regulation, which refers to the process of the 
government regulating certain activities. In another 
word, in contrast to the traditional power system 
structure that the Vertically Integrated Utility (VIU) no 
longer exists and the generation, transmission and 
distribution is owned by a single entity which supplies 
power to the customers at regulated rates, in an open 
energy market, Gencos may or may not participate in 
the LFC task and the common objectives, i.e. restoring 
the frequency and the net interchanges to their desired 
values for each control area are remained [7]. 

Deregulated systems will consist of generation 
companies (Gencos), distribution companies (Discos), 
transmission companies (Transcos) and Independent 
System Operator (ISO) which there can be various 
combinations of contracts between each Disco and 
available Gencos [4]. On the other hand, a Disco may 
contract individually with Gencos for power in different 

areas (It has freedom to contract with any available 
Genco in its own or another control area). 

To understand how the bidding process and bilateral 
contracts in a restructured power system are 
implemented, the “Generation Participation Matrix 
(GPM)” concept based on the idea presented by [4], is 
used here. 

GPM shows the participation factor of a Genco in 
the considered control areas (Discos). The rows and 
columns of the GPM matrix are equal to the total 
number of Gencos and Discos in the overall power 
system, respectively. It has the following structure [7], 

ܯܲܩ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

݌݃ ଵ݂ଵ ݌݃ ଵ݂ଶ … ݌݃ ଵ݂ሺ௠ିଵሻ ݌݃ ଵ݂௠
݌݃ ଶ݂ଵ ݌݃ ଶ݂ଶ … ݌݃ ଶ݂ሺ௠ିଵሻ ݌݃ ଶ݂௠

ڭ ڭ ڭ ڭ ڭ
݌݃ ሺ݂௡ିଵሻଵ ݌݃ ሺ݂௡ିଵሻଶ … ݌݃ ሺ݂௡ିଵሻሺ௠ିଵሻ ݌݃ ሺ݂௡ିଵሻ௠

݌݃ ௡݂ଵ ݌݃ ௡݂ଶ … ݌݃ ௡݂ሺ௠ିଵሻ ݌݃ ௡݂௠ ے
ۑ
ۑ
ۑ
ۑ
ې

                     (1) 

In the above matrix, ݃݌ ௜݂௝ refers to ‘generation 
participation factor’ and shows the participation factor 
of Genco i in the load following of area j based on the 
appropriate contract. 

Also sum of all entries in each column of the GPM 
matrix according to (2) is unity. 

෍ ݌݃ ௜݂௝ ൌ 1
௡

௜ୀଵ

                                                                      ሺ2ሻ 

Using the GPM matrix concept, the Gencos can 
submit their ramp rates (Megawatts per minute) and 
bids to the market operator. After a bidding evaluation, 
those Gencos selected to provide regulation services 
must perform their functions according to the ramp rates 
approved by the responsible organization [9]. 

For LFC analysis and synthesis in a deregulated 
environment, we use the generalized dynamical model 
introduced in [4]. In this scheme each control area has 
its own AGC and is responsible for tracking its own 
load and honoring tie-line power exchange contracts 
with its neighbors. 
 

2.2   Three-Control Area Restructured Power 
System Example 

In this paper, to illustrate the effectiveness of 
proposed control design, a three-control area power 
system shown in Fig. 1 (same as example used by [4]) is 
considered as a test system. 

In this model, each control area has its own Disco, 
two Gencos and a PI controller which is responsible for 
tracking its own load and honoring tie-line power 
exchange contracts with its neighbors. For the 
simulation tests, the rate limit value for each Genco is 
assumed 0.1, and, 1000 MW is considered as a base for 
the pu calculations. 
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iteration of the bisection algorithm evaluates the 
function at the midpoint ܿ ൌ ሺܽ ൅ ܾሻ/2. Based on the 
sign of the evaluation, either a or b is replaced by c to 
retain different signs on ݂ሺܽሻ and ݂ሺܾሻ. Explicitly, if 
݂ሺܽሻ݂ሺܿሻ ൏ 0 then the subinterval ሾܽ, ܿሿ is selected and 
the method sets ܾ ൌ ܿ however if ݂ሺܿሻ݂ሺܾሻ ൏ 0 the 
subinterval ሾܿ, ܾሿ is selected and the method sets ܽ ൌ ܿ. 
If ݂ሺܽሻ, ݂ሺܾሻ and ݂ሺܿሻ have the same signs, the 
bisection method selects the interval which produces the 
smaller value for ݂ (i.e. ݂݅ ݂ሺܽሻ݂ሺܿሻ ൏ ݂ሺܿሻ݂ሺܾሻ then 
ܾ ൌ ܿ otherwise ܽ ൌ ܿ) [11]. 

The bisection algorithm repeats this iteration until 
the interval between a and b and, hence, the resolution 
of the root of ݂ሺݔሻ is as small as desired. 

If ߝ is the desired root resolution then the algorithm 
will terminated at most in ݃݋݈ڿଶሺ|ܾ െ  ,iterations ۀሻߝ/|ܽ
or when one of the following conditions will be true 
[11], 

௡ାଵ݌| .1 െ |݌ ൏ ,௡ାଵ݌ which ߝ  are the ݌
midpoints of the interval in ሺ݊ ൅ 1ሻ௧௛ step and 
the midpoint of the initial interval respectively. 

௡ାଵ݌| .2 െ |௡݌ ൏ ,௡ାଵ݌ which ,ߝ  ௡ are the݌
midpoints of the interval in ሺ݊ ൅ 1ሻ௧௛ and ݊௧௛ 
step. 

3. |݂ሺ݌௡ሻ| ൏  is a given very small and ߝ which ,ߝ
positive number in all conditions. 

Then this algorithm has the following steps and 
following theorems, 
 
Step1: input ܽ, ܾ 
Step 2: let ൌ ሺܽ ൅ ܾሻ/2 : print ݔ. 
Step 3: if ܵܤܣሺ݂ሺݔሻሻ ൏  .then end ܵܲܧ
Step 4: if ݂ሺܽሻ݂ሺݔሻ ൏ 0 then let ܾ ൌ ܽ else let ݔ ൌ  .ݔ
Step 5: GOTO 2. 
Step 6: END. 
 
Theorem 3: [15] 

The bisection method is convergent in the interval 
ሾܽ, ܾሿ if ݂ሺܽሻ݂ሺܾሻ ൏ 0 and ݂ is continuous. 
Proof: 

If ݌௜ is the midpoint of the interval ሾܽ, ܾሿ in the ݅th 
step and ݌ is the problem solution, then absolute error in 
the ݊th iterations are calculated as follow, 

ଵ݌| െ |݌ ൏
ܾ െ ܽ

2  

ଶ݌| െ |݌ ൏
್షೌ

మ
ଶ

ൌ ௕ି௔
ଶమ               (5) 

 ڭ

0 ൑ ௡݌| െ |݌ ൏
ܾ െ ܽ

2௡  
As we know: 

lim௡՜ஶ
ଵ

ଶ೙ ൌ 0                (6) 
Consequently we have: 

lim
௡՜ஶ

1
2௡ ൌ 0 ֜ lim

௡՜ஶ

ܾ െ ܽ
2௡ ൌ 0 ֜ 

lim௡՜ஶ ௡݌| െ |݌ ൌ 0 ֜ lim௡՜ஶ ௡݌ ൌ  (7)         ݌
 

Therefore, the produced sequence by the bisection 
algorithm is finally convergent to the root of ݂. 
Following examples show the applicability of the above 
theorems and bisection algorithm in finding function’s 
roots. 
 
Example 3: 

Suppose we are going to solve the following simple 
equation by the bisection algorithm, 
ଶݔ ൅ ݔ ൌ 1                 (8) 
 

To solve this equation firstly we manipulate it that 
right side be zero. Then we have, 
૛࢞ ൅ ࢞ െ ૚ ൌ ૙                               (9) 

Equivalently the goal is finding the root of function: 
݂ሺݔሻ ൌ ଶݔ  ൅ ݔ െ 1. Now we guess two different 
numbers ܽ, ܾ so that ݂ሺܽሻ݂ሺܾሻ ൏ 0. Let ܽ ൌ 0 and 
ܾ ൌ 1 then ݂ሺܽሻ ൌ െ1 and ݂ሺܾሻ ൌ 1 therefore 
݂ሺܽሻ݂ሺܾሻ ൌ ሺെ1ሻ ൈ 1 ൏ 0. 

Whereas ݂ is polynomial then it is continuous in 
every interval of real numbers particularly in ሾ0,1ሿ. 
Therefore ݂ has conditions of theorem 1 then ݂ has at 
least one root in ሾ0,1ሿ. 

Derivative of function ݂ is equal to: 
݂ᇱሺݔሻ ൌ ݔ2 ൅ 1              (10) 

Obviously, ݂’ሺݔሻ is positive in ሺ0,1ሻ, therefore 
݂’ሺݔሻ ൐ 0 and ݂ has conditions of theorem 2 too. 
Namely ݂ሺݔሻ ൌ 0 has at most a root in ሺ0,1ሻ. 

According to the theorem 1 and 2, ݂ሺݔሻ ൌ 0 has just 
one root in ሺ0,1ሻ. Now we can use the bisection 
algorithm to find the root of ݂ሺݔሻ ൌ ଶݔ  ൅ ݔ െ 1 in 
interval ሾ0,1ሿ. 

The Table 1 shows summary of the bisection method 
to solve this example at five iterations. According the 
Table 1, root of ݂ሺݔሻ ൌ ଶݔ  ൅ ݔ െ 1 in [0 1] 
approximately is equal to .5973. 
 
Example 4: 

Suppose we are going to approximate the root of 
following equation by the bisection algorithm until 
|݂ሺݔ௡ሻ| ൏ 0.01. 
ଶݔ  െ ሺ1 െ ሻହݔ ൌ 0             (11) 
 
 
Table 1 Bisection method iteration for Example 3 

Iterations ࢔࢞ ࢈ ࢇ sign of ࢌሺࢇሻࢌሺ࢔࢞ሻ 

1 0 1 0.5 
 + 

2 0.5 1 
 

0.75 − 
3 0.5 0.75 

 
0.625 − 

4 0.5 0.625 
 

0.5625 + 
5 0.5625 0.625 

 
0.5937 + 
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In fact we want to find root of function ݂ሺݔሻ ൌ
ଶݔ  െ ሺ1 െ  .ሻହݔ

Now we guess two different numbers such as ܽ, ܾ so 
that ݂ሺܽሻ݂ሺܾሻ ൏ 0. Let ܽ ൌ 0 and ܾ ൌ 1 then ݂ሺܽሻ ൌ
െ1 and ݂ሺܾሻ ൌ 1 therefore ݂ሺܽሻ݂ሺܾሻ ൌ ሺെ1ሻ ൈ 1 ൏ 0. 
Because ݂ is a polynomial, then it is continuous in every 
interval of real numbers particularly in ሾ0,1ሿ. Therefore 
݂ has conditions of theorem 1 then ݂ has at least one 
root in ሾ0,1ሿ. 

Derivative of function ݂ is equal to, 

݂ᇱሺݔሻ ൌ ݔ2 ൅ 5ሺ1 െ  ሻସ                (12)ݔ

Obviously, ݂Ԣሺݔሻ is positive in ሺ0,1ሻ, therefore ݂ has 
conditions of theorem 2 too. Namely ݂ሺݔሻ  ൌ  0 has at 
most a root in ሺ0,1ሻ. 

According to the theorem 1 and theorem 2, ݂ሺݔሻ ൌ
0 has just one root in ሺ0,1ሻ. Now we can use the 
bisection algorithm to find the root of ݂ሺݔሻ ൌ ଶݔ  െ
ሺ1 െ  .ሻହ in interval ሾ0,1ሿݔ

The Table 2 shows summary of the bisection method 
to solve this example at five iterations. 
As it is clear from the Table 2, the root of ݂ሺݔሻ ൌ ଶݔ  െ
ሺ1 െ  .ሻହ in ሾ0,1ሿ is approximately equal to .3437ݔ

According to the above examples, although the 
bisection is a slow algorithm to approximate the root of 
equations, however it is so simple and unlike the most 
of other searching methods, it is a very convergent 
algorithm. 

 
Table 2 Bisection method iteration for Example 4 

It. ࢔࢞ ࢈ ࢇ sign of 
 ሻ࢔࢞ሺࢌሻࢇሺࢌ

 |ሻ࢔࢞ሺࢌ|

1 0 1 0.5 − 0.2167 

2 0 0.5 
 

0.25 + 0.1748 

3 0.25 0.5 
 

0.375 − 0.0452 

4 0.25 0.375 
 

0.3125 + 0.0559 

5 0.3125 0.375 
 

0.3437 + 0.0035 

 
 
3 Problem Formulation 

In this paper, a bisection method obtains the 
approximate best values of PI controller parameters. In 
each control area P and I parameters have been tuned 
according to the absolute value of Area Control Error 
 signal as their evaluation function (݂). The aim (|ܧܥܣ|)
of the optimization method is to tune ܲ and ܫ parameters 
according to gain the smallest value of the evaluation 
function. 

Assume ௜ܲ and ܫ௜ are the controller parameters of 
control area ݅ respectively which 0 ൑ ௜ܲ ൑ 1 and 
0 ൑ ௜ܫ ൑ 1; The bisection evaluation function of area ݅ 
is sum of all ACE instances over simulation time ݐ 
based on the specified value of P and I parameters 
,௉௜ݔ)  ,ூ௜) as followݔ

௫݂௜ሺݔ௉௜, ூ௜ሻݔ ൌ ∑ หܧܥܣ௜,௧ห௡
௧ୀଵ                                       (13) 

where ܧܥܣ௜,௧ ൌ ∆ ௜݂,௧ ൅ ∆ ௜,௧ in which݁݅ݐܲ∆ ௜݂,௧ is the 
frequency deviation and ∆ܲ݁݅ݐ௜,௧ is the power tie line 
between area ݅ and other areas. 

The bisection search for ܲ and ܫ parameters is 
performed as following algorithm, 

Step 1: Define [0 1] as lower and upper bound 
criterions for solution values of ܲ and ܫ parameters 
of area i respectively, then ܽ௉௜ ൌ 0, ܾ௉௜ ൌ 1 and 
ܽூ௜ ൌ 0, ܾூ௜ ൌ 1.  
Step 2: In each iteration two different midpoints are 
calculated for control area ݅, ܿ௉௜ ൌ ሺܽ௉௜ ൅ ܾ௉௜ሻ/2 
and ܿூ௜ ൌ ሺܽூ௜ ൅ ܾூ௜ሻ/2 then the 3-control area 
example simulation is run according to the new 
solutions of ܲ and ܫ, [ܿ௉௜, ܿூ௜] for each area.  
Step 3: After the simulation is done, next points are 
selected according to the bisection evaluation 
function (3), if ௔݂௜ሺܽ௉௜, ܽூ௜ሻ ௖݂௜ሺܿ௉௜, ܿூ௜ሻ ൏ 0 the 
subinterval ሾܽ, ܿሿ is selected and the method sets 
ܾ ൌ ܿ however if ௕݂௜ሺܾ௉௜, ܾூ௜ሻ ௖݂௜ሺܿ௉௜, ܿூ௜ሻ ൏ 0 the 
subinterval ሾܿ, ܾሿ is selected and the method sets 
ܽ ൌ ܿ then go to the Step 2 to run the next iteration. 
The procedure is terminated when ௖݂௜ሺܿ௉௜, ܿூ௜ሻ ൏

0.001. In this case ሺܿ௉௜, ܿூ௜ሻ is an optimal value for ܲ 
and ܫ parameters of area ݅. 
 
 
4 Experiments 

In order to demonstrate the effectiveness of the 
proposed strategy, it is examined in the presence of a 
sequence of step load changes for the various possible 
scenarios of bilateral contracts and load disturbances. In 
these simulations, the proposed optimization technique 
were applied to the controller of the 3-control area 
power system described in Background Section and the 
performance of it is compared with the performance of 
the ILMI robust controller introduced in [4]. 
 

4.1   Case Study 1: Poolco-Based Transactions 
The first test case study is based on the possible 

contracts under practical operating conditions and large 
load demands (a step increase in demand) by Discos of 
area 1, 2, and 3 as ߂ ௅ܲଵ  ൌ ,ܹܯ 100  ߂  ௅ܲଶ  ൌ
,ܹܯ 70  ߂ ௅ܲଷ  ൌ  .ܹܯ 60 

A case of Poolco based contracts between Discos 
and available Gencos is simulated based on the 
following GPM. In this scenario Gencos participate only 
in load following control of their areas. 
 

ܯܲܩ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0.5 0 0
0.5 0 0
0 0.5 0
0 0.5 0
0 0 0.5
0 0 ے0.5

ۑ
ۑ
ۑ
ۑ
ې

                                           (14) 
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generating units. The simulation results in the new 
model, show that it presents a desirable performance 
under a wide range of load changes specially compare 
with robust controllers. Moreover, this newly developed 
solution has a simple structure, and is fairly easy to 
implement in comparison to other controllers, which can 
be useful for the real world complex power systems. 
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